Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain Commun ; 5(2): fcad092, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2305799

RESUMO

Persistent somatic and neuropsychiatric symptoms have been frequently described in patients after infection with severe acute respiratory syndrome coronavirus 2 even after a benign clinical course of the acute infection during the early phases of the coronavirus severe acute respiratory syndrome coronavirus 2 pandemic and are part of Long COVID. The Omicron variant emerged in November 2021 and has rapidly become predominant due to its high infectivity and suboptimal vaccine cross-protection. The frequency of neuropsychiatric post-acute sequelae after infection with the severe acute respiratory syndrome coronavirus 2 Omicron and adequate vaccination status is not known. Here, we aimed to characterize post-acute symptoms in individuals with asymptomatic or mildly symptomatic breakthrough infection with severe acute respiratory syndrome coronavirus 2. These individuals had either proven infection with the Omicron variant (n = 157) or their infection occurred in 2022 where Omicron was the predominant variant of severe acute respiratory syndrome coronavirus 2 in Germany (n = 107). This monocentric cross-sectional study was conducted at the University Medical Center Hamburg-Eppendorf between 11 February 2022 and 11 April 2022. We employed questionnaires addressing self-reported somatic symptom burden (Somatic Symptom Scale 8) and neuropsychiatric symptoms including mood (Patient Health Questionnaire 2), anxiety (Generalized Anxiety Disorder 7), attention (Mindful Attention Awareness Scale) and fatigue (Fatigue Assessment Scale) in a cohort of hospital workers. Scores were compared between 175 individuals less than 4 weeks after positive testing for severe acute respiratory syndrome coronavirus 2, 88 individuals more than 4 weeks after positive testing and 87 severe acute respiratory syndrome coronavirus 2 uninfected controls. The majority (n = 313; 89.5%) of included individuals were vaccinated at least three times. After recovery from infection, no significant differences in scores assessing neuropsychiatric and somatic symptoms were detected between the three groups (severe acute respiratory syndrome coronavirus 2 uninfected controls, individuals less and more than 4 weeks after positive testing) independent of age, sex, preconditions and vaccination status. In addition, self-reported symptom burden did not significantly correlate with the number of vaccinations against severe acute respiratory syndrome coronavirus 2, time from recovery or the number of infections. Notably, in all three groups, the mean scores for each item of our questionnaire lay below the pathological threshold. Our data show that persistent neuropsychiatric and somatic symptoms after recovery from severe acute respiratory syndrome coronavirus 2 infection in fully vaccinated hospital workers do not occur more frequently than that in uninfected individuals. This will guide healthcare professionals in the clinical management of patients after recovery from breakthrough infections with severe acute respiratory syndrome coronavirus 2.

2.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1712991

RESUMO

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Assuntos
Barreira Hematoencefálica/virologia , Sistema Nervoso Central/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Anticorpos/farmacologia , Benzamidinas/farmacologia , COVID-19/patologia , COVID-19/virologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Guanidinas/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos
4.
iScience ; 24(7): 102752, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1275407

RESUMO

COVID-19 is a respiratory tract infection that can affect multiple organ systems. Predicting the severity and clinical outcome of individual patients is a major unmet clinical need that remains challenging due to intra- and inter-patient variability. Here, we longitudinally profiled and integrated more than 150 clinical, laboratory, and immunological parameters of 173 patients with mild to fatal COVID-19. Using systems biology, we detected progressive dysregulation of multiple parameters indicative of organ damage that correlated with disease severity, particularly affecting kidneys, hepatobiliary system, and immune landscape. By performing unsupervised clustering and trajectory analysis, we identified T and B cell depletion as early indicators of a complicated disease course. In addition, markers of hepatobiliary damage emerged as robust predictor of lethal outcome in critically ill patients. This allowed us to propose a novel clinical COVID-19 SeveriTy (COST) score that distinguishes complicated disease trajectories and predicts lethal outcome in critically ill patients.

5.
Brain Commun ; 2(2): fcaa205, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-998284

RESUMO

Neuropsychiatric complications associated with coronavirus disease 2019 caused by the Coronavirus SARS-CoV-2 (COVID-19) are increasingly appreciated. While most studies have focussed on severely affected individuals during acute infection, it remains unclear whether mild COVID-19 results in neurocognitive deficits in young patients. Here, we established a screening approach to detect cognitive deficiencies in post-COVID-19 patients. In this cross-sectional study, we recruited 18 mostly young patients 20-105 days (median, 85 days) after recovery from mild to moderate disease who visited our outpatient clinic for post-COVID-19 care. Notably, 14 (78%) patients reported sustained mild cognitive deficits and performed worse in the Modified Telephone Interview for Cognitive Status screening test for mild cognitive impairment compared to 10 age-matched healthy controls. While short-term memory, attention and concentration were particularly affected by COVID-19, screening results did not correlate with hospitalization, treatment, viremia or acute inflammation. Additionally, Modified Telephone Interview for Cognitive Status scores did not correlate with depressed mood or fatigue. In two severely affected patients, we excluded structural or other inflammatory causes by magnetic resonance imaging, serum and cerebrospinal fluid analyses. Together, our results demonstrate that sustained sub-clinical cognitive impairments might be a common complication after recovery from COVID-19 in young adults, regardless of clinical course that were unmasked by our diagnostic approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA